254 research outputs found

    Climbing the Jaynes-Cummings ladder by photon counting

    Full text link
    We present a new method to observe direct experimental evidence of Jaynes--Cummings nonlinearities in a strongly dissipative cavity quantum electrodynamics system, where large losses compete with the strong light-matter interaction. This is a highly topical problem, particularly for quantum dots in microcavities where transitions from higher rungs of the Jaynes--Cummings ladder remain to be evidenced explicitly. We compare coherent and incoherent excitations of the system and find that resonant excitation of the detuned emitter make it possible to unambiguously evidence few photon quantum nonlinearities in currently available experimental systems.Comment: 4 pages, 4 figures (color online). Updated bb

    Dynamic acousto-mechanical control of a strongly coupled photonic molecule

    Get PDF
    Two-dimensional photonic crystal membranes provide a versatile planar architecture for integrated photonics to control the propagation of light on a chip employing high quality optical cavities, waveguides, beamsplitters or dispersive elements. When combined with highly non-linear quantum emitters, quantum photonic networks operating at the single photon level come within reach. Towards large-scale quantum photonic networks, selective dynamic control of individual components and deterministic interactions between different constituents are of paramount importance. This indeed calls for switching speeds ultimately on the system's native timescales. For example, manipulation via electric fields or all-optical means have been employed for switching in nanophotonic circuits and cavity quantum electrodynamics studies. Here, we demonstrate dynamic control of the coherent interaction between two coupled photonic crystal nanocavities forming a photonic molecule. By using an electrically generated radio frequency surface acoustic wave we achieve optomechanical tuning, demonstrate operating speeds more than three orders of magnitude faster than resonant mechanical approaches. Moreover, the tuning range is large enough to compensate for the inherent fabrication-related cavity mode detuning. Our findings open a route towards nanomechanically gated protocols, which hitherto have inhibited the realization in all-optical schemes.Comment: submitted manuscrip

    Thickness Insensitive Nanocavities for 2D Heterostructures using Photonic Molecules

    Full text link
    Two-dimensional (2D) heterostructures integrated into nanophotonic cavities have emerged as a promising approach towards novel photonic and opto-electronic devices. However, the thickness of the 2D heterostructure has a strong influence on the resonance frequency of the nanocavity. For a single cavity, the resonance frequency shifts approximately linearly with the thickness. Here, we propose to use the inherent non-linearity of the mode coupling to render the cavity mode insensitive to the thickness of the 2D heterostructure. Based on the couple mode theory, we reveal that this goal can be achieved using either a homoatomic molecule with a filtered coupling or heteroatomic molecules. We perform numerical simulations to further demonstrate the robustness of the eigenfrequency in the proposed photonic molecules. Our results render nanophotonic structures insensitive to the thickness of 2D materials, thus owing appealing potential in energy- or detuning-sensitive applications such as cavity quantum electrodynamics

    Recent advances in exciton based quantum information processing in quantum dot nanostructures

    Get PDF
    Recent experimental developments in the field of semiconductor quantum dot spectroscopy will be discussed. First we report about single quantum dot exciton two-level systems and their coherent properties in terms of single qubit manipulations. In the second part we report on coherent quantum coupling in a prototype "two-qubit" system consisting of a vertically stacked pair of quantum dots. The interaction can be tuned in such quantum dot molecule devices using an applied voltage as external parameter.Comment: 37 pages, 15 figures, submitted to New Journal of Physics, focus issue on Solid State Quantum Information, added reference
    • …
    corecore